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Abstract. The effect of quantum lattice fluctuations on the properties of quantum phase transition in
a one-dimensional commensurate system near and at criticality is studied. The nonadiabatic effect due
to finite phonon frequency ωp > 0 are treated through an energy-dependent electron-phonon scattering
function introduced in a unitary transformation. By using the Green’s function perturbation theory we
have shown that our theory gives a good description of the effect of quantum lattice fluctuations: (1) At
the criticality, when the coupling constant g2 decreases or the phonon frequency ωp increases the lattice
distortion and the gap in the fermionic spectrum decreases gradually; at some critical value g2

c or (ωp)c,
the system becomes gapless and the lattice distortion disappears. (2) The calculated density of states do
not have the inverse-square-root singularity but have a peak with a significant tail below the peak. (3) At
the criticality our approach successfully describes the classical-quantum crossover. In the classical region
the adiabatic mean-field parameters may strongly be renormalized by nonadiabatic corrections, and in the
quantum region the phase transition is of the signature of a Kosterlitz-Thouless transition. (4) Away from
the criticality the critical exponents for the energy gap and the ordering parameter have been calculated.

PACS. 71.38.-k Polarons and electron-phonon interactions – 71.30.+h Metal-insulator transitions and
other electronic transitions – 71.45.Lr Charge-density-wave systems

1 Introduction

Recently, there is a growing interest in the quantum phase
transitions of some low-dimensional models of interacting
fermions, which are phase transitions at zero temperature
as some parameter is varied. It has been proposed that a
quantum critical point plays an important role in high-Tc

superconductivity [1].
Theoretical studies of quantum phase transitions in the

presence of quenched (time-independent) disorder have
been done by several authors. Fisher [2] performed an ex-
haustive study of the effect of randomness on the trans-
verse field Ising spin chain to undergo a quantum phase
transition. McKenzie [3] proposed to study the following
Hamiltonian,

Hs=
∫

dyΨ†(y)
(
−ivFσ3

∂

∂y
+ V (y)σ+ + V ∗(y)σ−

)
Ψ(y),

(1)

which describes the low-energy properties of quantum
phase transitions in the random XY spin chains (in con-
tinuum limit). In (1) σα(α = 1, 2, 3) and σ± = 1

2 (σ1± iσ2)

a e-mail: hzheng@mail.sjtu.edu.cn

are Pauli matrices.

Ψ(y) =
(
ψ1(y)
ψ2(y)

)
(2)

is the spinor representation of the fermionic field satisfying
the anti-commutation relations. V (y) is the back scatter-
ing potential. For the pure spin system without disorder,
V (y) = V0 is a constant where V0 is a measure of the
deviation from criticality. McKenzie assumed a Gaussian
correlation 〈V (x)V (y)〉 = V 2

0 + γδ(x− y) to describe the
randomness.

In this paper we propose to study the effect of lat-
tice fluctuations on the low-energy properties of quantum
phase transitions starting from the Hamiltonian (1) with
V (y) = V0 +ϕ(y), where ϕ(y) is an operator proportional
to the local lattice displacement

ϕ(y) =

√
α2ωp

KN

∑
q

(b†−q + bq) exp(iqy). (3)

N is the total number of unit cells, ωp is the phonon fre-
quency with spring constant K, α is the fermion-phonon
coupling constant, and bq(b

†
−q) is the annihilation (cre-

ation) operator of the phonon mode q. Here we assume
the commensurate case with a real back scattering poten-
tial V (y) = V ∗(y). Roughly speaking, in some sense the
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effect of lattice fluctuations are similar to that of the ran-
domness. But the former have their own dynamics which
can be described by

Hp = ωp

∑
q

b†qbq, (4)

the harmonic Hamiltonian of phonons. The total
Hamiltonian is H = Hs +Hp.

H is of the same form as the non-degenerate (V0 6= 0)
Takayama-Lin-Liu-Maki (TLM) Hamiltonian [4] for spin-
less electrons, which is the continuum version of the Su-
Schrieffer-Heeger (SSH) model [5] describing the physics
of quasi-one-dimensional polymers where the phonons in-
teract with the electrons by modifying the electron hop-
ping matrix elements. McKenzie et al. [6] treated H as
the model Hamiltonian for studying the effect of lattice
fluctuations on the energy gap and the optical absorption
spectra of quasi-one-dimensional systems, such as poly-
acetylene, K0.3MoO3, and the halogen-bridged metal com-
plexes. Generally speaking, H can be used to describe:
(1) the low-energy properties of quantum phase transi-
tions in the XY spin chains (in continuum limit) where
the lattice fluctuations play the role of dynamical ran-
domness, and (2) the Peierls instabilities with degenerate
(V0 = 0) and non-degenerate (V0 6= 0) ground state.

The theoretical analysis becomes difficult when the
quantum lattice fluctuations are taken into account. Var-
ious methods have been used for the problem, such as
the Monte Carlo simulation [7–10], perturbation calcula-
tion [11], Green’s function technique [12,13], renormal-
ization group analysis [14–16], variational method of the
squeezed-polaronic wave-function [17], a phenomenologi-
cal random potential with Gaussian correlations [6]. Pre-
viously, one of us developed a new approach to treat the
lattice fluctuations due to finite phonon frequency ωp > 0
through an energy-dependent electron-phonon scattering
function δ(k′, k) introduced in the unitary transforma-
tion [18]. In this work, we extend this approach to the
study of effect of lattice fluctuations on the quantum phase
transition in the model system H = Hs +Hp.

Throughout this paper we put ~ = 1 and kB = 1.

2 Theoretical analysis

In momentum space the Hamiltonian reads

H =
∑
k

vFkΨ
†(k)σ3Ψ(k) +

∑
k

V0Ψ
†(k)σ1Ψ(k)

+ωp

∑
q

b†qbq+

√
α2ωp

KN

∑
k,q

(b†−q+bq)Ψ
†(k + q)σ1Ψ(k). (5)

The last term in (5) describes the electron-phonon interac-
tion: at the electron-phonon vertex an incoming electron
with momentum k is scattered by the phonon into an out-
going one with momentum k + q. The momentum k is
measured from the Fermi point k = 0.

A unitary transformation is used to take into account
the fermion-phonon correlation, H ′ = exp(S)H exp(−S),

S =

√
α2

ωpKN

∑
k,q

(b†−q − bq)δ(k + q, k)Ψ†(k + q)σ1Ψ(k).

(6)

Here a function δ(k′, k) is introduced in S, which depends
on the energies of incoming and outgoing electrons in the
electron-phonon scattering process. It is defined as

δ(k′, k) =
ωp

ωp + vF|k′ + k| , (7)

and the reason of this definition will become clear later.
The total Hamiltonian H is divided as H = H0 +

H1, where H1 is the fermion-phonon interaction. Then
the transformation can proceed order by order,

H ′ = H0 +H1 + [S,H0] + [S,H1]

+
1
2

[S, [S,H0]] +O(α3).

The first order terms in the transformed Hamiltonian
H ′ are

H ′1 = H1+[S,H0]=

√
α2ωp

KN

∑
k,q

vF

ωp+vF|2k + q|Ψ
†(k + q)

×
{[
|2k + q|σ1 − i(2k + q)σ2

]
b†−q

+
[
|2k + q|σ1 + i(2k + q)σ2)bq

]}
Ψ(k), (8)

where we have already used the functional form of δ(k′, k).
The second order terms in H ′, which are diagonal in

phonon operators, can be collected as follows:

H ′2 = [S,H1] +
1
2

[S, [S,H0]]

=
α2

KN

∑
k,q

vF(2k + q)
ωp

(b†−q − bq)(b†q − b−q)

×δ2(k + q, k)Ψ†(k)σ3Ψ(k)

− α2

KN

∑
k,k′,q

[
2− δ(k′ − q, k′)

]
δ(k + q, k)

×Ψ†(k + q)σ1Ψ(k)Ψ†(k′ − q)σ1Ψ(k′). (9)

We make a displacement transformation to H ′

to take into account the static lattice distortion,
exp(R)H ′ exp(−R),

R = −u0

√
KN

4ωp
(b†0 − b0). (10)

exp(R) is a displacement operator:

exp(R)ϕ(y) exp(−R) = ϕ(y) + αu0, (11)
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and u0 is a variational parameter to describe the static
lattice distortion. This transformation is to introduce a
distortion potential ∆0(k) for fermions,

H ′0 =
∑
k

vFkΨ
†(k)σ3Ψ(k) + ωp

∑
q

b†qbq

+
∑
k

∆0(k)Ψ†(k)σ1Ψ(k) +
Ku2

0

4
N, (12)

∆0(k) = V0 + αu0[1− δ(k, k)]. (13)

The equation to determine u0 is

αu0 = − 2α2

KN

∑
k

[1− δ(k, k)] 〈Ψ†(k)σ1Ψ(k)〉, (14)

where 〈...〉 means the thermodynamical average.
All terms of order O(α3) in H ′ will be neglected in

what follows because H ′ = H ′0 + H ′1 + H ′2 becomes the
exact Hamiltonian in both ωp = 0 and ωp → ∞ limits.
When ωp = 0, δ(k′, k) = 0, and then H ′1 = 0, H ′2 = 0,

H ′(ωp = 0) =
∑
k

vFkΨ
†(k)σ3Ψ(k)

+
∑
k

[V0+αu0]Ψ†(k)σ1Ψ(k) +
Ku2

0

4
N. (15)

This is equivalent to the original Hamiltonian H in adi-
abatic approximation. When ωp → ∞, δ(k′, k) = 1, and
then u0 = 0, H ′1 = 0,

H ′(ωp →∞) =
∑
k

vFkΨ
†(k)σ3Ψ(k)

+ωp

∑
q

b†qbq +
∑
k

V0Ψ
†(k)σ1Ψ(k)

− α2

KN

∑
k,k′,q

Ψ†(k + q)σ1Ψ(k)Ψ†(k′ − q)σ1Ψ(k′). (16)

This is the exact Hamiltonian for ωp →∞ limit, which can
be obtained through the functional integration method [9].

3 ωp < πvF case

The purpose of our transformation is to find a better way
to divide the Hamiltonian into the unperturbed part and
the perturbation. For the ωp < πvF case we treatH ′0 as the
unperturbed part and H ′1 +H ′2 the perturbation, because
(1)H ′1 + H ′2 → 0 as ωp → 0 and (2) by choosing the
functional form of δ(k′, k) in equation (7) the contribution
of H ′1 to the self-energy when T = 0 is nearly zero (see
below).

The perturbation treatment is through the con-
ventional Green’s function theory. G0(k, ikm) =
[ikm − vFkσ3 −∆0(k)σ1]−1 is the Green’s function
for H ′0 and that for H ′, G(k, ikm), is related to G0(k, ikm)

via the Dyson equation. The second order (O(α2))
self-energy can be written as:

Σ(k, ikm) = ikmΣ0(k, ikm)+ (E(k)− vFk+Σ3(k, ikm))σ3

+ (∆(k)−∆0(k)) σ1. (17)

Here (E(k)− vFk)σ3 +(∆(k)−∆0(k))σ1 is the contribu-
tion of H ′2

E(k) = vFk −
α2

KN

∑
k′

vF(k′ + k)
ωp

δ2(k′, k)

+
α2

KN

∑
k′

[2− δ(k′, k)]δ(k′, k)
vFk

′

W0(k′)
, (18)

∆(k) = c− dδ(k, k), (19)

c = V0 + αu0 +
α2

KN

∑
k

δ(k, k)
∆0(k)
W0(k)

, (20)

d = αu0 −
α2

KN

∑
k

[1− δ(k, k)]
∆0(k)
W0(k)

· (21)

ikmΣ0(k, ikm) and Σ3(k, ikm)σ3 are contributions of H ′1.
When T = 0,

Σ0(k, ikm) =
α2ωp

KN

∑
k′

2v2
F(k + k′)2

(ωp + vF|k + k′|)2

×
[
1− sign(k + k′)

vFk
′

W0(k′)

]
× 1

(ikm)2 − (ωp +W0(k′))2
, (22)

Σ3(k, ikm) =
α2ωp

KN

∑
k′

2v2
F(k + k′)2

(ωp + vF|k + k′|)2

×
[
sign(k + k′)− vFk

′

W0(k′)

]
× ωp +W0(k′)

(ikm)2 − (ωp +W0(k′))2
, (23)

W0(k) =
√
v2

Fk
2 +∆2

0(k). (24)

We note that the contribution of H ′1 to the non-diagonal
term (the prefactor of σ1 in Σ(k, ikm)) is zero. Besides,
when T = 0, V0 = 0, u0 = 0, and at the Fermi point k = 0,
we have Σ0(k = 0, ikm) = 0 and Σ3(k = 0, ikm) = 0.
These are the reasons of choosing the form of δ(k′, k) in
equation (7).

The thermodynamical average 〈Ψ†(k)σ1Ψ(k)〉 can be
expressed as

〈Ψ†(k)σ1Ψ(k)〉 =
1
β

∑
ikm

Tr [σ1G(k, ikm)] , (25)

and then the equation to determine αu0, equation (14), is
(when T = 0)

αu0 =
2α2

KN

∑
k

[1− δ(k, k)]
∆(k)
W (k)

, (26)
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where W (k) =
√
E2(k) +∆2(k).

The density of states (DOS) ρ(ω) can be expressed by
the retarded Green’s function as follows:

ρ(ω) = − 1
πN

∑
k

ImTrG̃R(k, ω), (27)

where G̃R(k, ω) = G̃(k, ikm = ω + i0+) is the Green’s
function for the original Hamiltonian H,

G̃(k, ikm)=−
∫ β

0

dτ
〈
TτΨ(k, τ)Ψ†(k, 0)

〉
exp(iτkm)

=−
∫ β

0

dτ exp(iτkm)

×Tr
(
Tτe−βHΨ(k, τ)Ψ†(k, 0)

)
/Tr
(
e−βH

)
. (28)

β = 1/T and Ψ(k, τ) = exp(τH)Ψ(k) exp(−τH) is
in the Heisenberg representation. After the unitary
transformation

Tr
(
Tτe−βHΨ(k, τ)Ψ†(k, 0)

)
/Tr

(
e−βH

)
= Tr

(
Tτe−βH

′
exp(τH ′)eSΨ(k)e−S

× exp(−τH ′)eSΨ†(k)e−S
)
/Tr

(
e−βH

′
)
. (29)

The transformation of a single fermion operator can
proceed as

eSΨ(k)e−S=Ψ(k)+[S, Ψ(k)]+
1
2

[S, [S, Ψ(k)]] +O(α3)

= Ψ(k)−
√

α2

ωpKN

∑
q

(b†−q − bq)δ(k, k − q)σ1Ψ
†(k − q)

+
α2

ωpKN

∑
q,q′

(b†−q − bq)(b†−q′ − bq′)δ(k − q, k − q − q′)

×δ(k, k − q)Ψ(k − q − q′). (30)

Then the Green’s function reads (to the second order in α)

G̃(k, ikm) = G(k, ikm)− α2

ωpKN

∑
k′

δ2(k,k′)G(k, ikm)

− α2

ωpKN

∑
q

δ2(k,k−q) 1
β

×
∑
iωn

2ωp

(iωn)2 − ω2
p

G(k−q, ikm − iωn). (31)

When T = 0 and ω > 0,

ρ(ω) =
1
N

∑
k

[
1− α2

ωpKN

∑
k′

δ2(k,k′)

]
δ(ω −W (k))

+
α2

ωpKN2

∑
k,k′

δ2(k,k′)δ(ω − ωp −W (k′)). (32)

It is easy to check that
∫∞

0
dωρ(ω) = 1, the normalization

of DOS. The δ-functions in integrations, δ(ω−W (k)) and

δ(ω − ωp −W (k)), result in the fact that ρ(ω) = 0 when
ω < ∆(k = 0) = c− d, which is the gap.

Since u0 is related to the static lattice distortion, we
should define the ordering parameter up,

αup =
1
L

∫
dy

〈√
ωpα2

KN

∑
q

(b†−q + bq) exp(iqy)

〉
, (33)

which can be measured by experiments or by Monte
Carlo simulations. After performing the unitary transfor-
mations (6) and (11),

αup = αu0 −
2α2

KN

∑
k

δ(k, k)
〈
Ψ†(k)σ1Ψ(k)

〉
= − 2α2

KN

∑
k

〈
Ψ†(k)σ1Ψ(k)

〉
· (34)

At criticality (V0 = 0), equation (26) becomes

1 =
2α2

KN

∑
k

[1− δ(k, k)]
∆(k)

αu0W (k)
,

where ∆(k) = αu0(c′ − d′δ(k, k)) and

c′ = 1 +
α2

KN

∑
k

δ(k, k)
1− δ(k, k)
W0(k)

,

d′ = 1− α2

KN

∑
k

[1− δ(k, k)]
1− δ(k, k)
W0(k)

·

We note that, since 1− δ(k, k) = 2vF|k|/(ωp +2vF|k|), the
logarithmic singularity in the integration when u0 → 0
and ωp = 0 is removed by the factor 1 − δ(k, k) as
long as the ratio ωp/vF is finite. This means that when
V0 = 0 the system undergoes a phase transition from the
gapped phase (u0 6= 0) to the gapless one (u0 = 0) when
the dimensionless coupling constant g2 = α2/πvFK de-
creases across the critical coupling g2

c . This result is the
same as that of reference [8], but different from those of
references [13] and [18].

Figure 1 is the g2 vs. ωp/(ωp + πvF) phase diagram
when V0 = 0. The solid line is the phase boundary be-
tween the gapped and gapless phases determined by the
condition u0 = 0. From the line one can obtain the critical
coupling g2

c for fixed ωp, or the critical frequency (ωp)c for
fixed g2. The dashed line is the phase boundary which will
be determined in next section for the ω > πvF case.

Figure 2a shows the calculated DOS ρ(ω) versus ω/πvF

relations for three different sets of parameters at critical-
ity (V0 = 0), Curve 1 is the case near the critical point
(for ωp/πvF = 0.01, g2

c = 0.0921) and it is similar to
the DOS of free fermions (note that because of the lin-
ear k-dependence vFk of the free fermion energy, the DOS
ρ0(ω) for g2 = 0 is 1/πvF) except the small gap and two
peaks just above the gap (the second peak is the phonon
side-band). Curve 3 is the case far away from the criti-
cal point (g2 − g2

c = 0.1). For comparison, the adiabatic
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)

Fig. 1. The g2 vs. ωp/(ωp + πvF) phase diagram for the case
at criticality (V0 = 0). See text for details.

result (the dashed-line with ωp = 0 and g2 = 0.1921) is
also shown which has an inverse-square-root singularity
at ω/ωpeak = 1. For finite ωp, the singularity is absent
and there is a significant tail below the peak. The gap is
∆(k = 0) = c − d, which is non-zero but lower than the
peak. Curve 2 is the case with larger phonon frequency
(ωp/πvF = 0.1 for which g2

c = 0.1573). One can see that
the separation between the main peak and the phonon
side-band is nearly ωp/πvF = 0.1.

Figure 2b compares ρ(ω) versus ω/πvF relations be-
tween the cases of V0 = 0 and V0 > 0. Curve 1 is
in the gapless phase (for V0 = 0 and ωp/πvF = 0.05,
g2

c = 0.1297). Away from the criticality (V0 > 0) the sys-
tem becomes gapped with a peak above the gap. For com-
parison, the adiabatic result (the dashed-line with ωp = 0,
g2 = 0.1, and V0/πvF = 0.1) is also shown which has an
inverse-square-root singularity at ω/ωpeak = 1. Curve 2
and curve 3 are generally the same, except that the size of
the gap and the peak height increases with increasing V0.
The small peak which is a little bit higher than the main
peak is the phonon side-band.

We note that, qualitatively, our calculated DOS’s in
Figure 2 are similar to those of McKenzie et al. [6], espe-
cially for smaller ωp and larger g2 > g2

c (curve 3 in Fig. 2a)
or larger V0 > 0 (curve 3 in Fig. 2b). The singularity at the
gap edge (which may appear in the adiabatic mean-field
approximation) is absent and, instead of the singularity,
there is a peak with a significant tail below the peak. Main
difference between ours and those of McKenzie et al. [6] is
the second weak peak accompanied the main one in our
DOS’s which is the dynamical effect of phonons.

At criticality (V0 = 0) there exists a classical-quantum
crossover around αup ∼ ωp. Figure 3 shows the ordering
parameter αup as functions of the coupling constant g2

for different values of ωp. For the classical region where
αup > ωp the behavior of αup can be described by the
form of an adiabatic mean-field solution,

αup/πvF =
A2

sinh (A1/2g2)
, (35)
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Fig. 2. (a) The calculated DOS ρ(ω) versus ω/πvF relations
for three different sets of parameters at criticality (V0 = 0).
The adiabatic result (dashed-line with ωp = 0, g2 = 0.1921)
is also shown. (b) ρ(ω) versus ω/πvF relations for the cases
of V0 = 0 and V0 > 0. The adiabatic result (dashed-line with
ωp = 0, g2 = 0.1, and V0/πvF = 0.1) is also shown.

but the mean-field parameters (A1 = A2 = 1 when
ωp = 0) are renormalized by the quantum lattice fluctu-
ations. In calculations A1 and A2 are treated as fitting
parameters and we found A2 > A1 > 0 when ωp > 0,
which means that in the classical region αup > ωp the
adiabatic mean-field parameters are strongly renormal-
ized by nonadiabatic corrections. The fitting results are
shown in Figure 3 with dotted-lines. For the quantum
region where αup < ωp we use the form

αup/πvF = B1

√
g2 − g2

c exp

[
− B2√

g2 − g2
c

]
(36)

to fit our calculations, where B1 and B2 are fitting pa-
rameters. The fitting results are shown in Figure 3 with
dashed-lines. Note that equation (36) is of the simi-
lar form as that of the Kosterlitz-Thouless (KT) transi-
tion [8,9,16].
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Fig. 3. The lattice distortion up as functions of the coupling
constant g2 at criticality (V0 = 0) for ωp = 0.01 (a), 0.1 (b),
and 0.5 (c). The solid lines are results of our theory, the dotted-
lines are fitted results of equation (35), and the dashed-lines
are fitted results of equation (36). The calculated fitting pa-
rameters are shown in the figures.

As V0 is a measure of the deviation from criticality,
for fixed g2 and ωp > (ωp)c the gap and αup versus
V0 relations should satisfy some power laws (for small V0):

gap ∝ (V0)fg , (37)

up ∝ (V0)fu . (38)
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Fig. 4. The calculated critical exponents as functions of
ωp > (ωp)c for coupling constant g2 = 0.1 (a) (f∞g = 0.9198,
f∞u = 0.8397), 0.2 (b) (f∞g = 0.8659, f∞u = 0.7318), and 0.3
(c) (f∞g = 0.8268, f∞u = 0.6537). The solid lines are for fg and
the dashed-lines for fu. In every figure the two curves at left
side are the results of Section 3 and the two at right side those
of Section 4.

fg and fu are critical exponents and we determine them
through fitting calculations. The fitted results for fg and
fu as functions of ωp > (ωp)c are shown in Figure 4 for
fixed coupling constant g2 = 0.1, 0.2, and 0.3, respectively.
When ωp > (ωp)c both critical exponents go up very
quickly and reach a saturated value when ωp/πvF ≥ 1.
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4 ωp > πvF case

In the ωp →∞ limit (where δ(k′, k) = 1), the transformed
Hamiltonian (16), which is exact, reads (the phonon en-
ergy is not taken into account)

H ′ = −ivF

∫
dy
(
ψ†1(y)

∂

∂y
ψ1(y)− ψ†2(y)

∂

∂y
ψ2(y)

)
+V0

∫
dy
(
ψ†1(y)ψ2(y) + ψ†2(y)ψ1(y)

)
−α

2

K

∫
dy
[
ψ†1(y)ψ2(y) + ψ†2(y)ψ1(y)

]2
. (39)

It can be bosonized in the conventional way [19]:

H ′ =
vF

2

√
1 + 2g2

∫
dy

[
Π2(y) +

(
∂ϕ(y)
∂y

)2
]

−V0

πε

∫
dy cos [Bϕ(y)]− α2

2Kπ2ε2

∫
dy cos [2Bϕ(y)] ,

(40)

where B2 = 4π/
√

1 + 2g2. This is a two-frequency sine-
Gordon (s-G) model and there is no exact solution for
general case [20]. But we can discuss some regions of pa-
rameters which are of interest in our problem. For V0 = 0,
H ′ becomes single-frequency s-G model and it is well-
known that the gapless-gapped phase transition point is
at B2

c = 2π where g2
c = 3/2. For V0 > 0 but g2 < 3/2, the

last term in (40) is irrelevant[20] and the relation between
gap (or mass) and V0 is

gap ∝ (V0)f
∞
g , f∞g = 1/

(
2− B2

4π

)
· (41)

The relation between up and V0 can be derived from
equation (34). Since∑

k

Ψ†(k)σ1Ψ(k) =
∫

dy
(
ψ†1(y)ψ2(y) + ψ†2(y)ψ1(y)

)
∼
∫

dy cos [Bϕ(y)] ,

we have [19]

up ∝ (V0)f
∞
u , f∞u =

B2

4π
/

(
2− B2

4π

)
· (42)

The values of f∞u and f∞g are listed in Figure 4 for g2 =
0.1, 0.2, and 0.3, respectively.

For the region ∞ > ωp > πvF, H ′ = H ′0 + H ′1 +
H ′2 should be re-divided into the unperturbed part and
perturbation: H ′ = H∞0 +H∞I ,

H∞0 = −ivFη

∫
dy
(
ψ†1(y)

∂

∂y
ψ1(y)− ψ†2(y)

∂

∂y
ψ2(y)

)
+V0

∫
dy
(
ψ†1(y)ψ2(y) + ψ†2(y)ψ1(y)

)
−α

2

K
r

∫
dy
[
ψ†1(y)ψ2(y) + ψ†2(y)ψ1(y)

]2
, (43)

H∞I =
∑
k

[
vF(1− η)k − α2

KN

∑
k′

vF(k′ + k)
ωp

δ2(k′, k)

]
×Ψ†(k)σ3Ψ(k)+

∑
k

αu0(1−δ(k, k))Ψ†(k)σ1Ψ(k)

+
Ku2

0

4
N− α2

KN

∑
k,k′,q

(
[2−δ(k′−q, k′)]δ(k+q, k)−r

)
×Ψ†(k + q)σ1Ψ(k)Ψ†(k′ − q)σ1Ψ(k′) (44)

where

η = 1− α2

KN2

∑
k,k′

k′ + k

ωpk
δ2(k′, k), (45)

r =
1
N3

∑
k,k′,q

[2− δ(k′ − q, k′)]δ(k + q, k). (46)

When ωp → ∞, H∞I → 0. So we can treat H∞I as per-
turbation for ωp > πvF. The unperturbed part, after
bosonization, is

H∞0 =
vFη

2

√
1 + 2g2

r

η

∫
dy

[
Π2(y) +

(
∂ϕ(y)
∂y

)2
]

−V0

πε

∫
dy cos [B′ϕ(y)]− α2r

2Kπ2ε2

∫
dy cos [2B′ϕ(y)] ,

(47)

where B′2 = 4π/
√

1 + 2g2r/η (Note that B′ → B when
ωp → ∞.) When V0 = 0, the phase boundary between
the gapped and gapless phases is at B′2c = 2π, that is,
g2r/η = 3/2. The g2 vs. ωp relation is shown in Figure 1
by the dashed line. Note that r and η are functions of g2

and ωp.
For V0 > 0 but g2r/η < 3/2, the last term in H∞0 is

irrelevant. The relation between gap (or mass) and V0 is

gap ∝ (V0)fg , fg = 1/
(

2− B′2

4π

)
(48)

and that for up is

up ∝ (V0)fu , fu =
B′2

4π
/

(
2− B′2

4π

)
· (49)

It is easy to check that fg → f∞g and fu → f∞u when ωp →
∞. The two curves at right side in every figure of Figure 4
show the exponents as functions of ωp for g2 = 0.1, 0.2,
and 0.3, respectively. Generally speaking, the results of
this section and those of last section cannot be connected
smoothly. But there exists a common property that when
ωp/πvF ≥ 1 the critical exponents are nearly constants.

5 Summary and discussion

We have studied the effect of quantum lattice fluctuations
on the low-energy properties of quantum phase transition
in a one-dimensional commensurate system. An energy-
dependent electron-phonon scattering function δ(k′, k) is
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introduced in the unitary transformation and the func-
tional dependence of it is determined by the perturba-
tion theory, that is, the contribution of H ′1 to the self-
energy when T = 0 is nearly zero. By using the Green’s
function perturbation theory we have shown that our the-
ory gives a good description of the effect of quantum lat-
tice fluctuations: (1) At criticality (V0 = 0), when the
constant g2 decreases or the phonon frequency ωp in-
creases the lattice distortion and the gap in the fermionic
spectrum decreases gradually; and at some critical value
g2

c or (ωp)c, the system becomes gapless and the lat-
tice distortion disappears. A phase diagram is derived.
(2) The calculated DOS do not have the inverse-square-
root singularity but have a peak with a significant tail
below the peak. (3) Our approach successfully describes
the classical-quantum crossover around αup ∼ ωp when
V0 = 0. In the classical region αup > ωp the adiabatic
mean-field parameters are strongly renormalized by nona-
diabatic corrections, and in the quantum region αup < ωp

the phase transition is of the signature of a KT transition.
(4) For ωp > (ωp)c the critical exponents for gap and the
up have been calculated,

In Section 2 we point out that the transformed Hamil-
tonian H ′ becomes exact for both ωp = 0 and ωp → ∞
limit. Here we show that H ′ is also perturbatively exact
for ωp/πvF � 1 and ωp/πvF � 1 as follows. When V0 = 0
and u0 = 0 the renormalization factor of the band func-
tion τ(k) = E(k)/πvF (E(k) is the renormalized band
equation (18)) at the Fermi point k → 0 is correctly de-
scribed in leading order in ωp or 1/ωp:

τ(0) = limk→0
E(k)
πvF

= 1− α2ωp

KN

∑
k′>0

2
(ωp + vFk′)2

= 1− α2

K(ωp + πvF)
· (50)

When ωp � πvF, τ(0) = 1 − α2/πvFK, which is similar
to the renormalization factor 1/(1 + λ) in the Migdal-
Eliashberg theory (in our work DOS is a constant 1/πvF

for V0 = 0 and α = 0). When ωp � πvF, τ(0) = 1 −
α2/ωpK, which is the same as the mass renormalization
factor in the small polaron theory.

In this work we are mainly concerned with the gapped
phase which is semiconducting. Voit and Schulz [21] stud-
ied the gapless metallic phase of the one-dimensional
electron-phonon coupling system starting from the sim-
ilar Hamiltonian H = Hs + Hp (Eqs. (1) and (4)) with
V0 = 0. Here we try to compare our result for the case
of V0 = 0 and u0 = 0 (thus there is no gap) with
that of Voit and Schulz [21]. Our renormalization factor
τ(0) = 1−α2/K(ωp +πvF) is the ratio between the renor-
malized Fermi velocity vRF and the bare one vF, which was
also calculated by Voit and Schulz [21]. Briefly speaking,
our τ(0) correctly describes the behavior of vRF /vF as a
function of g2 = α2/πvFK when g2 is small.

The approach developed in this paper is based on
the unitary transformations (6) and (10), and the main
approximation we made is the omitting of higher order
terms after the transformation. The approximation be-

comes bad one when the electron-phonon interaction is
quite strong (g2 > 1). So our approach is good for the
weak- to intermediate-coupling case but cannot be used
to treat the strong-coupling electron-phonon system, for
example, the self trapping case.

Finally, we give a note on the physical meaning of
δ(k′, k) (Eq. (7)), which was introduced in the unitary
transformation and plays an important role in our treat-
ment. One can see that δ(k, k) = ωp/(ωp + 2vF|k|) has
a peak at k = 0, the Fermi point in our model system,
and when ωp/vF � 1 the peak is very sharp. This peak
means that only those electrons near the Fermi point
within a range of about ωp/vF can participate in the
electron-phonon scattering and contribute to the reduc-
tion of the energy gap compared with the adiabatic value
(see Eq. (14)). This fact is similar to that in the Bardeen-
Cooper-Schrieffer theory [22] for superconductivity: only
those electrons near the Fermi surface form Cooper pairs
via a phonon-induced effective attraction.
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